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A BAYESIAN SOLUTION FOR TWO-WAY

,,ANALYSIS OF VARIANCE1

by

Dennis V. Lindley

University College London

sr

SUMMARY

The standaXd statistical analysis of. data classified in two ways (say

into rows and columns) is through an analysis of variance that splits the

total variation of the data into the main effect of rows, the main effect

of columns, and the interaction between.rowa' and columns. This paper

presents an alternative Bayesian analysis of the same situation that is \.---(7

appropriate for certain types of prior knowledge. It leads to a rather

different treatment of the three factors just mentioned.

1
The research reported herein was performed pursuant to Grant No.

0EG-0-72-0711 with the Office of Education, U.S. Department of Health,
Education, and Welfare. Contractors undertaking such projects under.
Government sponsorship are encouraged to express freely their professional
judgment in the conduct of the project. Pointd of view or opinions stated
do not, therefore, necessarily represent official Office of Education
position or policy.



In this paper, we consider the analysis of data (xijk) having the

following probability structure. iFor given parameter values (eij) and (ai

the random variablies xijk are independent3and normally distributed with

E(xijk) =
ei.i

apd var(x
ijk

) = u
ij

: _here i,= 1, 2, .,., m; j = 1, 2; ..., n;

and k = 1, 2, ..., rij

An example where this model for data might be appropriate is where xijk

is the performance of a subject in an educational test, the subject 'having

beento School i and College j, there being r such subjects and the

suffix k serving to enumerate their. There, .0 would correspond to the

true score of subjects fromSchool i and College j on the test, and 0
2

would measure their variability. Any analysis of the datp would investigate

ij

what effects the school, and callege'aftended had on performance. At first,

we shall confine attention to the case where the variabilities u i2
j

are ali

the same, equal to a
2

; and there are the same numbers of subjects in each

group, so that r1]. . = r, say. This is 'usually referred to as the orthogonal

case, and its analysis is rather simpler than that for the general situation

which is discussed toward the end of the paper. Rather than refer t9

schools and colleges, we shall use the neutral terms "rows" and "columns";

kthxijk is then the k observation in. Row i and Column j, the data being

conveniently laid out on the page in such. a row and column formation..

Let us first recall how such data are traditionally analyzed. Anv

good textbook on statistics thatseals with the two-way analysis of variance,

with interaction, will provide details beyond the summary which follows:

for example, Snedecor (1956, Chapter 11). We use the familiar "dot"

notation for averages. Thus, x1 . =. F, x
i k

/nr
'

the mean of the data in
j

.],k
Row i, the dots,replacing the suffixes j and k over which summation has

en place. The usual analysis breaks up the Cotal sum of squares about

the ov all mean, (x
ijk

x...) , into at le'dst four components.
i,j,k

Firstly, t ere is the maineffect of rows
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and secondly, that of columns

a

nrE(xi.. x )

2

2
MrE(x x

Mc third is the interaction between rows and columns

Vr. r E (x.

i,j +X )
2.

..

residual, sum of squaresand the last is the . or. milhin groups,

2

1
j k ij()

,Jk

(1)

(2)

(3)

(4)

.

theirOn, division by apprcprate degrees of freedom, each of the first

three against the last using
l

may be tested the fami liar F-test. It, for

example, only the first test is significant, then the column and interaction

effects are supposed zero and 0
ij

, for all j, is estimated by lc.

Comparisons between these meaus are effected by multiple-comparison procedures

of which Scheffe's is, perhapsthe most popular.

This analysis, apart from being open to the usual criticisms that can

be leveled against significance tests, is unsa isfac6pry in that it forces

ion of havingone into the posit to he dogmatic about whethei a.particular

effect exists, not. Thus
, several estimates of e are available den ending

.

on the resu4 (mentioned above) andof the tests. Two are x.
1.

xi.. + _ x (if row and column, but no interaction, effects exist),
-j. ...

A better would beter procedure to estimate the size of each of the effects

estimate The methods developed h.elow do-ju:-;t this and,and .accordingly.
-.1

for appears
ij

heavily if the row effectthe row in which. 0example, weight -

appears to be. large Significance tests are, thereby, avoided.

For the one-WaY classi fication, where E(xik) = 0i ,, such an Ana1vsh; has

been given by Lindley (1971) and extended to other ;s,tuations in the cent6xt,
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of a general theory byLindley and Smith (102): In this paper, we apply

the results of the latter reference to obtain an estimate of e
ij

that uses

in a balance that depends an the relative sizesxij X
x.j

and x...

of the main effects and interaction. In order to utilize this theory, it is

necessary probability distribution of the (eii)to describe the prior

(and.also 02, Nut in the firs t analysis this will be supposed known).

the one-way case, it was suggested that the joint distribution might

reaso nably have the property of exchangeability; that is, be invariant

In

under any permutation of the suffixes. This property is clearly inappropriate

as is seen by considering the joint distribution of ain the two-way case

Pair, 0.. and .

rs

for any pair of (different)

relation between Qij and a is (j # s) in the same row to be different from

Under exchangeability, this distribution is the same

0's, whereas it would be reasonable for the

that between 0.; and Drs (i r) in different rows (and columns). In our.

example, knowledge of the Performance of subjects at School i and College j

might affect knowledge of subjects from the same school at another college,

whereas it might saY little about those from a different school at the

college. We, therefore, have to express the prior ideas other than through

exchangeability. We use, instead, a modified form of it.

Our prior opinions might lead us to think that the value of 0.. is

influenced both by the row and the column that it is in. If these effects

are assumed additive, we might suppose

0ij = p + a, +

Where mean, (
1.1 is an overall ce

i
) and

i

) respectively describe rowand

column effects, and (Yij) represent independent error terms, say, normal

with zero mean and variance 02
. Alternatively expressed, we could say;

given
.i, (ai)' (B )'

with

and a
2
,'the O's are independent and normally. distribute'd
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E( ) + a
i
+

j (5)Oij

and variance G
2

. The rows and columns might reasonably be exchangeable;

2 2
and hence, given P

a
,

b'
0
a°

o
b,

we might suppose the a's and 1's

,4ndependent and normally distributed w
/jb'

var(a ) = J
2

, ghd var(13 ) = o
2

.

a

This-model fits conveniently into the framework developed by Lindley

and Smith. In their terminology, it is a fot*-stage model; the first stage

describes the dependence of the x's on the 0's; the second, that of the

J's on the a's mkt l3's; the third describes the structure of the a's and

O's; anc a fourth stag, is necessary to describe the prior distributions

of pa a id p . As n earlier examples, this distribution can be supposed

diffuse and ae variances for P
a

and
b

allowed to tend to infinity. It

is poss ble to proceed with the analysis of the four stage, form, but it

is convenient to reduce it first bo a three-stage version with a diffuse

prior at the third and final stage: the two analyses are equivalent, except

for one point to be discussed later in considering the variance estimation.

To derive the three-stage model, consider the distribution of the (3's,

given P, but not the c/'s and, B's. From (5), it is clear that the covariances

ar- giveh by

and

cov(0
ij

,

rs
) = 0, i r, j s (6a)

cov(013
is a

) = 0 2
j # s (6b)

cov(0 0 ) = o
2

, i r (6c)
ij' rj b'

cov (0 0 ) (32 + + 02 (6d)
ij ij . a b

(The last is just the variance of 0
ij

.) For example, the difference between

(6a) and (6b) is just the distinction we were discussing above concerning



subjects from the same School (row) i . Consequently, a second stage,

which replaces the second and third staged of the first model,, supposes

(01} has .a,moaltivariate normal distribution with covarian e structure

igiven by equation (6) and constant fleal. o (now incorporaelnA 0
a

and o

The third (and 4-1,a1) stage says the knowledge ()Leo is diffuse.

This is 'the model we suggest might be appropriate for some two -way

analyses. We must emphasize that there may well exist two-way situations

in which the above prior specification(in the second and third stages)

is quite unsuitable. Before performing an analysis of the type suggested

below, it must first- be checked that the model is reasonably suitable. Our

second- and third-stage forms are assumptions that may not always be rbalistic.

-40111
For example, suppose the rows (schools).were of two types, say urban an!

rural, then the a's (in the four-stage form) would not be exchangeable for

,all i--perhaps, only within-urban and within -rural schools.,

With this caution; let us summarize the model:

First stage. .Given (0
ij

), o
2

; the (x
ijk

) are normal and independent

with'E(x
ijk ) =

0
ij

an variance o2

2 2 2
Second stage. Given P9 C5

a
a
b c'

the (0
ij

) have a multivariate

normal distribution with dispersion matrix, given by equations (6), and

E(0
ij

) = 0

Third stage. The prior knowledge of p is diffuse.

2
Our 'first object is,' for given g

2 2
GI), and G

2
, to find the posterior

'distribution of the (0.:). It is tsy to see that it will be multivariate

normal; the means will then provide estimates of the (0
ij

), and the dispersion

matrix will enable standard errors to be attached to these estimates. We

later relax the conditions on the knowledge of the four variances and show

how they too may be estimated, merely prqxiding revised estimates
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4

and standard errors for the 0's. Finally, we discuss the more general first

stage where var(x
ijk

) = a
ij

; and the number, r
ij

, of observations varies

from cell to, cell.'

The algebraic,derivatioin of the estimates .0ij of 0
ij

is given in

Appendixil: It.' is ihere shown that

2

2 -2
r/a + ac

, r/u
+

r..
r/a

2
+ 17(a

c

2
+ nu,

a

2
)

x
i.

r/a

2 2

2
.

+t
2

(x x...) + x
-rici + 1/0

c
+ MGb )

-.I. ... .40

- f

2

. xi

This is the main result of this paper. The form of this estimate is

interesting. Lt depends on four aspects of the data: xij. , the mean of the

obfervations in cell (i, j); xi., and x.j, the corresponding row apd:column

means; and x , the overall mean. If is a weighted combination of'this

last,
t

4. ,--'x..., the effect of the row, x
.J.

- x
...

, the effect of the
. u

column, and x - x x + x , the interaction effect. The weights
ii. i. -j- ...

(

depend on1the variances 0
a'

cy

13'
and a

2
in addition to th\residual variance

/ c

,(from the
,

data) o
2

. Some special cases are interesting. Suppose G
2

c
= 0

,so that, equation (5), eij is a linear combination of the row and column

effects and no interact Lion exists. Then, the first term in (7) vanishes,

there is no contribution from the data-interaction effect, and e
ij

uses only

X , X and x . This is al extreme case corresponding to the assumed

lack of an interaction as indicated in the usual -approach by a non- s,ignificant

F-test for, the interaction. If, in addition to o
c

2
= b, o

a

2
= 0, the second

term in (7) also vanishes and only the column effect appears from the data.

(;



8

22
If

2
= 0 without o 'vanishing, the first and second t,rins in (7) combine

a c

to give a multiple of (x11, x ). These results generalize a'naturai

way those,of Lindley (1971) for the one-way case In :which similar weighted ,
1

r.t

combinations occurred. Later, weshall noe how to estimate the lour

variances and, hence, the weight* ,

4

To obtain-the posterior variances and covariance of these estimates,

write the weights in (7) as

80,

. Then, (7) becomes

, 2
ri

We 2 -2
r/o + o

w =
,a 2 ,

00 + 11(
2

c
+ no

a

2
)

2

.

r/o
2
+ 1/(u

2
+ mo

2
)

c b /
__,...

- 00 2

= W (X . + x...)
w (x. -

Li C ij. a .. x...)

If we further put

nW = wa wc, mW
b
= wh wc mnW = we

and put w' = W , for symmetry, (7) can

0 = W x

e written

tj c ij.
+ nW x + mW

b
x + mnWx

a i..

w1 + 1

(8)

(9)

For reasons given in Appendix 1, the dispersion matrix for' 0 .,Is given by
II

[compare equations (6)1



E

and

"VOI H
rs

) = Wo
2

r,
4

(tla)r, I f s

cov(O , ()La) (Wa + W)o
2
/r, / I f.s 0 (lib)

1

cov(o ) (w W)0 /r , I r (L1c)
r]

C: 000
11

,

'

0
l

,) tW
a
+ W

h
We + W)o-2 /r (11d)

These expressions are somewhat cumbe\rsome since the l's'are fairly

complicated, but some results are 4.1ittle easier. For example, consiger

the posterior variancle of 0 0. (j i 's), that Is the difference between
LS

Columns 1 and s In the same Row i . I t is.2 var(0 ) - 2 cov(0 , 0 )

i] is '

which, from (11 (lid), is (W
b
-+ W

c

2
/r . For th4 means of rows

-(or columns), the results are easier still. For example, the variance of

0
1.

- the difierebee hetween two rows (schools) averaged over columnsle,

(colleges) is (i r, 1 i.$)

)

r.
) :,--- n

-2
var(X0 X0 )

Lj rs
(0.

i

= n 2n var(0
ij

) - 2n cov(0
i'

0 )
r j

23
2

rn

2n(n-l)cov(0 , ) 2n(n-l)cov,(0 0 )

ij is ij rs

Wa+Wb+Wc+U - (W +W) +-(n-1)(W
a
+W) 1n -1)W

frOm (11), aad using (9), this is finally equal to

202 -

rn a

( r

2 2

c
+ no

a

s

(12)



Since-0
*

ij
[equation (7)]. is the posterior mean, the mean of 0 i

0 t , which, from (7), is easily seen to he
....

w
a
(x X + x = w

a
xt + (1 -w 1)x.)x

10

a weighted average of x
i"

and x . Had x
1

'been used as an estimate,

as standard theory would suggest, then, the variance for 0
1.

- 0r quoted

would he 20
2
/rh rather than this times w

a
, given by (12). Hence, our

estimate is pulled toward the overall meanand has smaller variances when

compared with other'values.' it follows that tTusual multiple comparison

procedures, such as Scheff6'ys, are unnecessary in'our approach.' The

shift toward the mean and e reduced standard errors perform exactly the

function that these orthodox procedures are designed to provide.'

These estimates (and standard errors) depend upon knowledge of the

2. 2.
y.four variances o

2
, oh, and 0

c
. In any application, these ,are typically

unknown but can b estimated from the data. This is obvious for a out

ts also.true for the others since there is replication of rowsand columns.

We-proceed to discuss their estimation.

Lindley and -Smith, in discussing the general theory, show that if we

are content with posterior modes for estimates (rather than posterior means),

we can continue to estimate Oli by equations (7) provided we insert, for the

four variances, modal estimates of them. It will, therefore, suffice to

find the posterior modes for the variances. It is inconvenient to do this

within the context of the three-stage model because the compression of two

stages into one results in 0
2

(for the original, second stage) being combined

2
with (

2
and l

b
(from the third stage) in expressions like

,0,2

+ no
a

, and we
a c

have the difficulties familiar in components of variance problems (or what
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As sometimes called Type II analysis pf variance) of having to estimate

1 2'
0.- ind aC.+ naa

separately, and hence a
2 by subtraction, so leading to the

c a
'. .

possibility of negative estimates for a
a

2
, or even within the Bayesian

. .

. .

framework,,td. difficult calculations. This can be avoided by using the

four7stage' model, when the procedure is essentially to estimate (ai) and

.
2

(8
j

) and, hence, a
2
by a multiple of E(a

i
a
*
)
2

; similarly, o
b

. Also,
a

i

(52ccaribefo"dfrollithesuillsofscIllaresof0 [see equation
1 i

. .

(5),]. Finally, a
2

can be found, although the usual within sum of. squares

is not enough since 0
ij

is, ,within the present theory, not estimated by

xij as is usual. Hence, the within-sum underestimates the total variation

7

that contributes to a
2

. All tbese ideas are straightforward generalizations

of ideas contained in the papers to which ref rence already been made.

The details of the calculation of the p sterior modes are given in

Appendix 2. Equations (2.3) and (2.4) provide estimates of (i.) and (S ),

respectively. Notice that only thdeviation rom the mean is estimated,

which is all that is necessary. Distinction should be made between the

estimate of, for example, a
i

by [equation (2.3)]

and that of 0
i.

r na
2

(ai a.)*
a

(x x

a

2
rnd + ro

2
+ o

2

2 2
r na

a
+ ra

c
0 . e )* x )

1. 2 ?
rno

a
+ r.G_+ c

c

'
[from (1.18), or (7) on summing over j, and a little simplification.'] The

difference is that 0 is the average for Row i over the columns used in the

experiment, whereas a
i
is a similac average not confined to the columns of

the experiment. / In particular, a* is shrunk more toward the overall mean



than is 0* since the coefficient of the deviation (x x ) is smaller

in the former.

Equations (2.5) provide the estimates of the variances, using the

estimates for (a
i

) and (6 ) just obtained as well as those for (0..) already

calculated. Those estimates, in turn, depend on the variances, and so some

iterative procedure has to be used. We suggest the following: Obtain

initial estimates of the four variances from the usual analysis of variance

expressions, expressions (1) to (4), divided bytheir respective degrees of

freedom. These will he unsatisfactory estimates but will serve to provide

weights to be used to estimate the 0's [equation (7)] and the a's and 2's:

With these estimated, new values for the variances can be found from equations

(2.5) and the cycle repeated until convergence.

Notice that the estimates (2.5) involve quantities derived from the

prior distributions of the variances., There is no objection to putting

.), corresponding to 0 , equal to zero; but the remaining values v
a

v v

2
cannot be ignored. The difficulty is that if o

a

2
,

13'
or o

c

2
are small in

comparison with ,1 (or more correctly a /0, there is little information

in the data from which to estimate them since the'variation in the (x
ij

) is

mostly due to .1 In this case, the prior knowledge is clearly important

and so naturally arises in any estimation procedure. If o , for example,
a

is large; its estimation is easier, and in (2.5b), the sum of squares for

*
a

i

will dominate v \ unless the latter is large: that term and y in the

denominator may be ignored.

Whilst the estimates for oil , given the variances, are almost certainly

satisfactory;, it may he possible to improve the estimation of the variances

in comparison with the methods given in this 'paper; and we hope to study the

problem in more detail Filter. [n the meantime, it might he reasonable to
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guess that the term mw in the denominator of (2,5d) might be replaced by

the degrees of freedom (m 1)(n 1). In deriving modes, rather than -/

means, the usual integrations that remove degrees of freedom do not take

place, and hence, the divisor always involves the total number, here mn,

of parameters. Another way of looking at it is to appreciate that the

modes of marginal distributions are not the components of the modes of

the whole distribution.

The discussion has so far been confined to the case where there is

the same number, r, of observation in each cell. Suppose now that there

are r
ij

observations in the cell in the i
th

row and j
th

column. In' this case,

it is not possible to obtain simple expressions for the estimates 0
ij

as in

equation (7). Instead, we have to be content with linear equations for

them which can then be solved numerically in any particular case. The

estimatesoffollow with minor modifications as do the
L

estimation of the variances. Details are given in Appendix 3.

The last generalization we make is to the case where the within-cell

variance o
j

is not constant. In most applications, rid will not be
i

2
large enough to effect a good estimation of 0

ij
; but if the latter are

assumed connected in some way, then sensible estimation may be possible.

2
We have been able to make progress in the case where all the (o- ) are

exchangeable. Ideally perhaps, one could make a modified exchangeability

assumption as we have with the means, but I have not been able to develop

a satisfactory procedure. Details with the full exchangeability assumption

are given in Appendix 4. Appendix 5 summarizes the calculations required

in the general case. Finally, Appendix 6 provides a simple numerical example..
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APPENDIX 1: Posterior Distribution of the Cell

Means Assuming the Variances Known

When writing out vectors of elements' depending on two or more suffixes,

we shall use a lexicographical order: thus,

T
(o(011, 012'

01n' 021' 022' .." emn)

The three-stage model is exactly in the linear framework developed by Lindley

and Smith, and their corollary 2 [equations (16) and (17)1 shows that the

posterior distribution of (0
ij

) is normal with first and second moments

there stated. Their notation is

First stage. E(x) = A
1-
0
1,

dispersion matrix C
1

.

Second stage. E(01) = Ag, dispersion matrix C2

Then, the posterior distribution of 0
1

is N(Dd, D) with

and

-1 T 1D =AA
1
+ C2 1 C2 1A

2
(ATC-2 -1A

2
)4ATC 111 2 2-

T -1d= AC x
11 k'

. (,1.2)

We proceed to evaluate (1.1) and (1.2). The matrix C
2

is given in equations

(6): thus, the element in the row corresponding to
o..

and column corresponding

2
to 0. s) is 0

a
, and others similarly. The inversion required for (1.1) .

LS

is most easily accomplished by solving the equations in z, C z = a . Written

out in full, these are

2
o
2
z + no

2
z + mo z = a ,

j jc ij a b i

using the "dot" notation. Summing over i and j, we have



or

where

15

2

c
+ na

a

2
+ mo

2

b
)z = a

z = a /v
mn

2 2
v
mn

2
= 0 + n0 + mob

Summing (1.3) over j, we similarly obtain

(0
2
+ no

2
)z. + mo

2
z = a.

c a 1. b 1-

which, on using (1.4), can be written

where

Similarly,

where

z = mo
2a

/v )/v
1- 1. b mn n

2
v
n

=1.(3 + nag

z

1

= (a
j

no
2
a /v

mn
)/v

a m

2
vm = uc

2
+ mO

b

Substitution of (1.6) and (1.7) into (1.3) gives

1
,---nag

a 2

mat 2

2
z . = 0

c

-2
a..

v v
(a. mo

b
a

..
/v
mn

) (a
'.

no
a
a
..

/v
mn

)
ij

n
1-

m Th

(1.4)

(1.5)

(1.6)

.J1.7)

(1.8)

(1.9)

. (1.10)

Since z = C
21
a, identification of terms on the right-hand shows that C

2

1
has

the same structure as C
2

itself [equations (6)]. For example, all the terms

in rows (i, j) and columns (r, s) with i r, j # s ire the same. From (1.10),

the terms are



i r, j s:

= r, j s: f + h ,

r, j = s: g + h ,

i = r, j = s: e +'f + g + h
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where h is the coefficient of mna in (1.10). That is,

2 2

h =
G
a

CY

+
b 1 1

(1.12a)
o
2
v

v
n

vm
.

c mn

f is the coefficient of na. in (1.10); namely,

f =
2
/cT

2
v

a c n

Similarly, g is the coefficient of ilia so

2
g = a

b
/0

c

2
v
m '

and e corresponds to a..; namely,
13

e = 0-c
2

(1.12b)

(1.12c)

(1.12d)

We note for future reference that summation of (1.10) over i and j gives

z = a '(e + nf + mg + mnh) so that, on comparison with (1.4),

e + nf + mg + mnh = v
-1

mn
(1.13)

Having' evaluated C
-1

1---v4e! now return to (1.1). A is easily seen to be a
2 2

vector, all of tahose elements are unity. Hence, A C
2

1
is a (row) vector, all

2-

of whose elements are e + nf + mg + mnh = v
mn
1

[from (1.13)]. Hence,

A C
2

1
A

2
= mnv

mn
-1

Simple calculation shows that C
2
A
2
(A
T
C
2

1
A
2
),

1
A
T
C
2

1
is a

2 -2 -2-
r

matrix, every element oT which is (mnv )

-1

mn
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first sr
T -1,

Reference to the

with every

-age of the model shows easily that A C A
-1-1 -1

is a diblgonal 'matriX' eal to rio2 . Consequently,

-1

diagonal element eq

x of the same form as c-1
2

[equatiOns (1.11)];D tequation (1.1)] is .. matrix

but with e reOlaced by e + r/a2 - o', say, and h by h _ (mnv )-I = l''''
Say.

mn

The values of f and g are unaltered. Further consi deration of the first

stage element is xii.r/o 2hows that j)d is a vector whose (i, 4Nof the model 9

If 0* denotes the estimatete of Q., that is, the posterior mean of

their joint di buti°e; the corollary quoted about *that 0 = Dd, or

D-1 0
*

d IAserting the values of D
-1 and d just obtained and writing

these equations out iq full, we have
,

e'0
1

nfe
*

+ mg0* + mnh'0 x, r/o
2

(1. 14)
i

ij.

[compare equations (1.3)]. These equations are most easily solved by

writiflp

6*

ij \40.

(,) r. 0*
0* (1.15)

* = *
. 0 - 0*1

and

Y 1. - x - 4 x . + x
ij. 1 .

-
.1

/

vi. x.' x (
(1.16)1.. r"

Y-li x x
)

'J. i

We caq then rewrite (1.14) as

a

(e' hf)(1)i. + (oT
I

mg)(1,*. (e' + nf + mg + mnh')fl*
11

(y
ij

Yi. + x )r/o
2

. (1.17)
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We note, from (1.13), and the _fact than e' = e + r/o
2,

h' = h (mhvmn)-1;

that e' of + mg + mnh' = r/02

Summation of (1.17) over i and j gives 0
*

= x , over j alone gives

(e' + nf)(). = yi r/a
2

or

on

Similarly

2
* r/0

y.

r /o2 + v
n

the Values for e' e + r/a2, 6, (1.12d) and f, (1.12b).

r/a
2

Y
, 2 -1 -3

r/o + v
m

vand :inserting these values into (1.17),

(1).1]
r/a

2

r/cr
2
+ 0

-2

c

(1.18)

(1.19)

(1.20)

to the originalinal form in U.terms of 0 and
1.]

we easily obtain the
ij

expressions given in (7)

The dispersion matrix for these estimates (that is, the dispersion matrix

of the posterior :110Alial distribution) is, by the corollary, D . The equations

just s olved are 0* = Pq, so D may be found by taking the coefficients of the

elements, x., 7`, of d in
tj

covariance of 0
ij

the solutions. For example, to obtain the

and Drs with i i r, j i s, it is only necessary to take the

2
coeffi cient of x r/0 in the expression for 0

*
In the notation given by

rs- ij

(8) and (9), this is easily to be seen from (10), W since x
rs-

only occurs in

these with coefficient w . All the expressions given in equations (11)

can robtained in the same way.

.2
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APPENDIX 2: Estimation of the Variance Components

In the four-stage model, descritred by (5) and the following sentence,

the joint probability distribution-of all the random. quantities (x
ijk

),

(Oil), (ai), and (8j), after integration with respect to the diffusepriors

of u, Li

a
and pb, is easily seen to be proportional to

x exp

-mnr -mn+1 -m+1 -n+1
ex

c
a
a 013

p E (x.. - )2/0.1

lik

- Oii)2 + 2 (0ii O - ai + a. - Bj + B.
_a 1,3 i,j

1

1
E(c4.

2
o
a

i

There, the total sum of squares

components within- and between-cells. Differentiation with respect to the

8's, a's, and B's, and equating the results to zero gives modal estimates

for these parameters. It is not difficult to verify that for e
ij

is exactly

a )
2

for

1
2

Z((3. 8 )

2-

b
j

the data has been

(2.

broken into the two

1)

O.. given by the three-stage model in equation (7). We proceed to find the

corresponding modes (un and ( Bj
*
). The result of differentiating (2.1) with

respect to ai is easily seen to be

*1) (ct

C

.t

1

2

a f

where = b. u.. [cf (1.15)]. Equating this to zero and using the
1 1

estimate of .1)* [equation (1.18)], we easily obtain
i

Similarly,

2
rno

2 (xi..
a

rno + ro
2
+ o

a

rmo.

(x . x
2

rm0
b

+ ro
c

2
+ a

2

(2.2)

(2.3)

(2.4)
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With these estimates, it is an easy matter tq obtain equations for the

2
modal estimates of the four variance components 0

2
,

o a2
'

.

o
b'

and Suppose

these have independent prior distributions which are all inverse x
2

.

Specifically, let

vX 2
vtX

t 2 ,

'1' X vt.
= a, b, c)

2 Xv
a
2

t

Multiplication of tliv, distribution'(2.1), by this prior, gives the

posterior distribution of_ all the parameters, including the variances,

apart from constant factorsA The modal equations for the variances are
44)

straightforward since the expression factors into four parts, each depending

2
s

2
s =
a

2
s
h

=

2

on one of the variances. The results are (we use s
2

for an estimate of a

rather than the asterisk notation used with the other parameters)

v + S + r O..)
* /

(mnr + v + 2)
w ij

, j

v +
a a t a

v
h

+ 1,0* 1*)1/(n + v +

*
n
* + a* - *

+ ( ?

*)2C.
2

where S = (x x ) , the usual within-cells sum of squares. For

i,j,k
w ijk ij.

r

(2. 5a)

(2.5b)

(2.5c)

/(um + v + 1 ) ,

c

(2.5d)

easons given in the main text, mn in the denominator of (2.5d) can probably

he replaced by (m 1)(n 1).
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APEENDIX 3: Unequal Numbers of Observations in the Cells

In -this appendix, we consider the case where cell (i, j) contains r..
13

observations, not all equal. .Since the change from stant
j

r only

affects the first stage of the model, the calculations in Appendix 1, on

the second stage, are unaffected. However,_AlT C11 Ai will be a diagonal

matrix with diagonal ener00§- r
i

/o
2

. The result will he that D will not
,j

have. a iconst

et

read

-1'
nt diagonal entry; and e in C

2
will he replac d, not by

,
but by entries e + rid /a

2
. Equations (1.14)will, therefore,

2 * *
(e

t
+ r

ij
/(1 )0

ij
+ nf0

*
+ mge mnh'0

*
= x. r

j. ij
(3.1)

It does not seem possible to write down the solution to these at all simply

and resort must he had to numerical calculation in,any particular case. The

matrix on the left -hand side of (3.1) is the inverse of the posterior

dipersion matrix, D, and this too will have to be found numerically. It

is not, therefore,Vssible to give formulae for the variances and covariances

of 0
*

, generalizing:Dations (11).
ij

With the O's.estimated, the argument leading to (2.2) is unaffected and

the 's may be found

Similarly,

TOM

Note that equations (2.3) and

o )* (3.2)

2
mo

(0 - 0 )* . (3. 3)"
1
2 2 - j

-(c b

(2.4) are no longer availahle.
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Finally, the estimation of 0
2

, 0
2

b' c
and 0

2
fequations.(2.5bLC)) is

unalt)red, but the new'estimation of o
2

is

4
s
2

= vA + S
w

rid
\

i.j
ij )9(R + v + 2)

22

(374)

replacing (2.5a). There, R = -E r, .

lj1,3 .4
Notice the nonorthogonality °problems, that arise.in the usual approach-

-- .
.

for ,example, the nonindependence bf sum of squares- -dolls not matter here.

Nevertheless, the complicated form of the poeterior dispersion matrix does

47
make it much mare difficult to describe and understand_the_analysis; and for

this reason, the balanced design is much to be prefekred.
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The main part of this appendix is virtually independent of the rest of

the paper, but the results Obtained therein are then applied to the two-way

analysis when the within-cell variances

The estimation of variances has been, discussed by Lindley (l971) ,, but

,the analysis there contains some flaws; and we, therefore, ap oach the .

2
o are not constant.
1]

problem afresh. The simplest case of variance estimation is where there ate

m independent samples, each froM a nominal distribution of known, zero mean

th
but unknown variance. Let the i sample have variance (1)i and denote the

data sum pi ,(;tart s about the mean (i.e., zero) by S
2

; this Will have' n

,.degrees of freedom where n, isthe.sizeofthat..-miple.Theform a
t.

.set of'sufficient statistics, and the Likelihood for the data is proportional

to

111

exp
st ( 1

7t);
(4.1)

SUPPOSO !IOW
4
Lhat the prior opinions of the variances are that they are

exchangeable. One way of achieving this is to suppose "e- d themso I ves

a random sample 'ficom t4ome distribution: indeed, if the exchangeability is to

hold for,.every m, then this is the only way to achieve it. it is convenient

to suppose this distribution to be of the form Conjugate to (4.1.), namely,

Inverse -x- . Specifically, we suppose the distribution of to be such

.

that, for given \I and o', yo
2

bp, Is x wItb v degrees of freedom. There,

tind"clrell/P°1-1"1"111"Wse°2heingaltleasurec41"ationfor4',0110

therefore, by the exchangeability, of every variance) and v measuring the

precision of that Ostribution. The prior distribution of the given

the hyperparameters, is therefor-x:9



0
, v0

2
(v0)

H exp ( -2

i=1
(t)

i
;Iv + 1 %v

. 2 (11.v - 1):

This may be rewritten

where

and

1
(

H

(v(12) v

G
Ilv

% 1
exp 12-12-(1-

+
2 1\) (1/2v - 1):

1 m
H

114. = Gm

24

(4.2)

(4.3)

so that C and II are, respectively, the1geometric and harmonic means of the

variances we are trying to estimate.

The next stage is the assignment of a prior distribution for v and_o
2

.

In the earlier paper, equation (16)'of Lindley (1971), we assigned a distribution

2
of o , given v; thus, making these two dependent. It seems more natural to

think of them as independent since they measure quite different features of

the distributions of the (1)'s. Suppose then that Xo/2,1s distributed.as X
2

on 6 degrees of freedom, S and X being known constant/ralues, independent of

.

whose distribution will be discussed below. Since the mean of X
2

is 6,

,tiA

-1
is our prior estimate of any tpi . The value of S reflects the precision

attached to this estimate and would usually be small. The density of 0
2

is

then proportional to

exp Y.G2
2

(0 )

CI

(4. 4)

We have to multiply (4.2) by (4.4) and integrate the result with respect

to TheThe only terms that involve 0
2

are
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........

1/2vm -1-" 1/26 - 1

expE
H

x)a2 2

and the integration gives

1/2(vm + )
2 410, [1/2(vm + 6) - 1];

x)1/2(vm + 6)

Restoring the terms o far omitted f (4.2), we get, apart from .constants,

U1/2(vm + 6) - 1j' v11\il 1

m G(1/2v + 1)m env x)1/4 (v 6)
(4.5)

This complicated expression can be simplified using Stirling's formula for the

factorial function. Its most convenient form for our purpose is

log (av + b)! c +.(a log a a)v,+ av log v + (b + 1/2)log v

for constants a, b, and c . The logarithm of (4.5) is then, apart from a

constant which does not involve the (P's, and omitting terms of order v
-1

1/2m log(H/G).v + 1/2(m - 1) log v (m log G + 1/2AH - 1/26 log H) .

Hence, (4.5) is, approximately, equal to

G 1/2(m - 1) -1/2AHu1/26G-m
exp(- log -4 v).v (4.6)

Finally, suppose v has a pri9r density' proportional to

exp(- ykyv)v1/2(5'
1

(4.7)

The product of (4.) and (4.7) is then, easily integrated with respect to v to

give

e
r1/2AH

H
1/26

1/2(m = 1) + 1/26'

Cm(m log -9-- + A')

(4.8)
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On multiplying by the likelihood, we have finally for the posterior

distribution

exp 1/2(E

of the 0i) a Value proportional to

S
2

+ All H C m log +
i 1/26 ( 1/2n) m

A1/2(m - 1) + !0'
1

(4.9)

We proceed to find the modes of this distribution and to use these as

estimates of the variances. Taking logarithms and differentiating (4.9), we

have

,2
n
i 1 G

71)

, H
2

, H
lA ---- 0

1/2

2 2
m

G mg)
mg) mg)

i

[1/2(m 1) + 1/26']
1 1

(m log + A-, ) ( 4),

H
G

(1)2

i

(In obtaining this result, the derivatives

DH H
2

and
DC G

D(1)

mq)
4. 111.

i
which are easily verified, have been used.)

of (P, is given by

1/2(m - 1) + 1/26'
n. + 2 +

m log
G

+ A'

N.

Consequently, the estimate (1)

i

s2 AH2/m 1/2(m - 1) + 28

1 m log
G + A'

(4.10)

This rather complicated expression for can be simplified. If we put

= 6 = 0, we are [equation (4.4)] effectively assuming that we have little

priorPknowledge of o
2

, and we have the usual prior for a variance proportional

tb a
-2

. This causes no convergence problems in (4.10). We cannot do the

same for v [equation (4.7)], but (S.' = 1 will simplify things a little [for then,

U
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1/2(m - 1) + 1/26' = ;gm], while avoiding cQnvergence problems and yet representing

diffuse knowledge of v . (4.10) then becomes

+ 2)62i. +
log +

*

i 1(ni 4- 2) +

log -H+ + A"

(4.11)

where X" = X' /m and s
2
= S

2
/(n

i
+ 2),,

i i

The form of (4.11) is informative. 4 is a weighted average of the usual

estimate,Si2 (apartfromadivisorni +2insteadofil.)and the harmonic moan

of the (p's. (In this mean, we can conveniently replace cp
*

by s
2

.) Hence,

we see that the estimates are pulled toward the harmonic mean just as the

estimates of means move to the arithmetic'mean. The weight attached to the

mean is the reciprocal of (log + X") and increases as the geometric and

harmonic means become more disparate (note that G > H). It is not possible

to let X" = 0, since then, infinite weight is attached to the mean value with

. G = H.

Now, let us apply these results to the two-way analysis of variance.

the four-stage model, the probability distribution will be' as (2.1) except

that the terms involving a
2
will be replaced by

g
2

r/G21/2 E (xij e ). ilila-rijexP
E (xijk xil

)2/G
ljij i,j,kij

On writing,

this becomes

S
2

(O..) = E(x
ijk

x
ij.

)
2
+ (xij. - Oii)

2
rij ,

ij ij

fl
0-riie

xp

i,1

- 1-1S
2

(e )/0
2

ij ij ij

. (4.12)

(4.13)

(4.14)
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This is a likelihood of the same form as (4.1) with (bearing in mind the

double suffixes) ai2j for (pi, Si2 i(Oii) for Si, rij fir ni, and mn for m .

We now suppose the a
2

to be exchangeable. This may not be appropriate
ij

because it fails to exploit the row and column structure of the layout; but

as a first approximation, it might be reasonable. If we do this, the

appropriate estimate of o
2

is given by the equivalent of (4.11): that is,

with

s
2 ij ij

S (0 ) + PH

ij rid +2 +p

-1
p = log --C. + X"

(4.15)

G and H being, respectively, the, geometric and harmonic means of the (sib).
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APPENDIX 5: Methods of Calculation

In this appendix, we describe in summary form thebateps to be carried

out in calculating the estimates for the general case of unequal r and a 2

ij ij

(1) Calculate from the data the basic statistics, ( ) a dxij. _.

E(x - x )i Insert prior values for A' (4.7)--A" (in 4.1 ) is Ai/mn--

[
ijk i.j.

p

k

v
t'

A
t
(t = a, b, c) [for equations (2.5b-d)].

(2) Calculate initial estimates of 02
'

02
b'

2
'

0 and po
a c

and

q
2

using

s
2
= rnE(x - x )

2
/(m - 1)

a

s
2
= rmE(x - x )

2
/(n - 1) ,

s
c

2
= rE(x

ij.
-x -x + x.j

2
/ (m 1)(n - 1) ,

s
2

E (x
i

x. )

2
/ (r

i
- 1) .

i,j,k
jk ij.

1,1
j

stimate

2
(3) With these estimates replacing aa2 , ab, ac2, and a2, solve equations

(3.1) for O'. . In these equations,
i

and

e = a
-2

, of = -na
2
/a

2
(a

2
+ na

2
), mg = -ma

2
/b

c c
a
2
(a

2
+ ma

a c c a

2 2
mnaa b 1a

2
- 1(0

c

2
+ na

2
+ ma

2
) .

aC
2 a

c
+ na

a

2
a
2

1

+ ma
2

c

(4) Still using these estimates, find - a.)* and (Oj S.) from

equations (3.2) and (3.3).

(5).',With 6ij replacing 0
ij,

calculate S
ij

(0
ij

), equation (4.13) and,

hence, initial estimates, si2 of ai2 from (4.15). In this last formula, use
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G and H as the geometric and harmonic'means [equations (4.3)] of

S
2

j
(0
*

ij
)/(r

ij
. + 2).

i

(6) Calculate revised estimates of s a2
'

s
2

and s
2
using equations

c

(2.Sb-d).

4 2
(7) With these new estimates of aa2 , ab, and a

2
and the estimates of

ai2i; resolve equations (3.1) except that a
2

is replaced by.the estimate of

oia

2
where a

2
divides 0

i
and x

l j ij

(8) Repeat (4) using the new estimates for
ij

.

(9) Repeat (5).

(10) Repeat (6).

Repeat (7)-(10) until the result§ converge.

Notice that in the final solution of (3.1)--stage (7)--the matrix whose

inverse is effectively obtained is the dispersion latrix of the (0
j
) and

should be made available:

A
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APPENDIX 6: A Numerical Example
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n this appendix, we describe the results of analyzing a simple case

using the methods developed in the paper. Richmers and Todd (1967) give

the following data, in their Table (8.21), taken from an experiment_ on. the

breaking strength of three fabrics at four temperatures with two replicates

at each of the twelve combinations. We, therefore, have the tase of constant

Fabric
Temperature

210 215 220. 225

A

B

C

1.8 2.0 4.6 7.5

2.1 2.1

2.2

2.4

5.0 7.9

4.2 5.4

4.0 5.6

9.8

9.2

2.8 4.4 8.7' 13.2

3.2 4.8. 8.4 13.0

Ye,

2,
numbers of replicates, and we assume that a

ij
is also fixed but unknown

at a
2

. We, therefore, haVe the simpler'situation discussed in the bulk of

the paper. The prior distribution suggested therein seems ajpropriate

except that exchangeability of the column values (temperatures) ignores the ,

fact that they are in sequence. But such information on ordering is

neglected in the usual analysis Of. variance technique, so we ti4 the ,same

for comparison purposes. in the standard Methodthe 3 degreesi freedom

associated, with temperature would be broken up into linear and perhaps,

quadratic terms: "a parallel Bayesian analysis could easily be developed.
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We took v * 0, vt * vt = 1 (t = a, b, c) in equations (2.5). These correspond

to weak prior knowledge without causing convergence problems. (Values v
t
= 3

were also tried with only a small effect on the results.)

The next table gives for each of the 12 cells the estimate e
ij

of the

cell mean obtained from equation (7) with estimates from (2.5) of the variance

components replacing the es. Also, included in brackets is the mean of the

two original readings for that(cell for comparison purposes. For each row

and column there are similarly given the estimates a
i

and a., from (3.2) and

(3.3) together with the data means in brackets for comparison.

Fabric
Temperature

210 215 220 225

A

B

1.39 2.41 5.11 .8.80 4.31

(1:95) (2.05) (4.80) (7.70) (4.13)

2.24 3.49 6.02 9.85 5.38

(2.30) (4.10) (5.50) (9.60) (5.38)

3.63 4.85 7.72 11.62 7.10

(3.00) (4.60) (8.55) (13.10) (7.31)

2.53 3.66 6,26 9.95

(2.42) (3.58) (6.28) (10.13)

The estimates of the variances are s
2
= 0.495, s

a

2
= 0.991, s

2

b
= 5.591,

s * 0.098, These shim a large effect of temperature, a smallet effect of

fabric, and a small interaction term. The estimates e
ij

are, therefore,

dominated *the additive effect of the two factors. These, displayed in the
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borders of the table, show the usual shift toward the overall mean. For

example, the value of el, the mean breaking strength at 210 is 2.53, greater

than the observed mean of 2.42.4r The shift with the cell means is greater

because of the almost complete removal of the interaction component. Thus,

fabric A at 225 is estimated at 8.80 against an observed value of 7.70

which is a shift away from the mean. Notice that as a result of these

shifts, the estimate of residual variance is at 0.495, much. larger than the

conventional value of 0.056 obtained from the 12 within-cell differences.

I am most grateful to David Christ and Gerald Isaacs who wrote the

computer program and ran the above example. Their enthusiasm and expertise

was most helpful and provided an illuminating insight into the merits of

interactive computing.
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